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Introduction 
The basic mathematical concept in this paper 

is the directed graph, or digraph, which is 
defined as a set V of nodes or "points" and a set 
L of directed arcs or "lines," connecting pairs 
of nodes. The set V contains g distinct elements, 
vi, v2, vg, and the set L contains C arcs, 

Li, /2, We further require that no two 
distinct lines be in parallel; i.e., there exists 
at most one line connecting node v to node vk. 
For convenience and to adhere to the established 
convention, a loop, a line connecting vj to vj, is 

not allowed in the digraph. 

Digraphs differ from the more common undirec- 
ted graphs because they have the additional char- 
acteristic that every line has an orientation or 
direction. Digraphs in which an arc from v to 
vk implies the existence of an arc from vk vj 

are symmetric. Symmetric digraphs are, of course, 
undirected graphs. When we desire to denote a 

directed line in terms of its two points, we write 
Li vjvk for the directed line running from vj to 

vk. We let D$ be a specific digraph on g nodes. 
Note that Dg is a zero -one, or binary directed 
graph. The strengths or intensities attached to 
each arc are irrelevant, since our definition does 
not allow for the existence of valued lines. In 

what follows, we discuss mathematical representa- 
tions for both directed graphs and undirected 
graphs, although we concentrate on the more general 
directed graph. 

A digraph Dg is easily represented by a (gxg) 
matrix. We define a matrix X, with elements 

1, if vivj L 

= 
0, otherwise. 

The matrix X is called the adjacency matrix of Dg 
and has one row and one column for every node in V. 

An adjacency matrix for an undirected graph if, of 

course, symmetric. A different ordering of the 

elements in V produces an adjacency matrix that 

differs from X by a simultaneous row -column permu- 
tation. Two digraphs with g nodes whose adjacency 

matrices differ by such a row -column rearrangement 

are called isomorphic. Note that since loops are 

not allowed, the diagonal elements of X, Xii, i =1, 

2,...,g, are set to zero. 

Two sets of quantities are particularly 

interesting. The outdegree of node vi, written 

ri, is the number of arcs originating at node vi. 

The indegree of node written cj, is the number 

of arcs terminating at node vj. Every element in 

r and c takes on a value between 0 and (g -1). 

Figure 1 shows an example of a digraph and asso- 
ciated adjacency matrix, including indegrees and 

outdegrees. The standard reference for these 

concepts is Harary, Norman, and Cartwright [1965]. 

This discussion of mathematical models for 

graphs is both a literature review and a collec- 

tion of future suggestions for graph modelling. 

We present several models originally developed for 

processes other than graphs, giving model assump- 
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tions and a few derived results. We also comment 

on the applicability of these models to directed 

graphs, and in particular, social networks. Quite 

a few ideas for future research are given. We 

feel that a thorough understanding of existing 

models applicable to directed graphs is an essen- 

tial prerequisite for the development of relevant 

and encompassing stochastic models for social net- 

works. 
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Figure 1: Digraph and Associated Adjacency Matrix. 

Categorizing Mathematical Models 
In addition to reviewing mathematical models 

specifically developed for graphs, we examine, in 
some detail, mathematical models originally con- 
structed for entities other than directed graphs. 
The structure considered are models for processes 
from such natural science fields as statistical 
physics, organic chemistry and biology, and bio- 
physics, easily modified to become models for 
graphs. The models from the literature for graphs 
themselves, are, by and large, from the social 
sciences, and postulate mathematical representa- 
tions for social networks, specific sets of social 
relations linking members of well- defined groups. 
Mathematically, a social network may be defined as 

a binary directed graph with nodes for individual 
group members and arcs for the relational links. 

Before we present the various models, we note 
that all mathematical models (for many kinds of 
processes) can be dichotomized twice: one by a 
deterministic vs. stochastic division and once by 
a static vs. time- dependent split. The first 



dichotomy is a function of whether or not the 

model under consideration incorporates probabilis- 

tic assumptions. Deterministic models allow no 

opportunity for the graph to deviate from a pre- 

scribed pattern, usually given by a system of 

differential equations, or substantive theory. 

Stochastic models by definition do not allow the 

current or future structure of a graph to be pre- 

dicted with certainty. The second dichotomy is 

solely a function of what the model postulates 

about Does the model in question assume 

that a graph evolves over time (time -dependence) 

or not (stasis)? 

Deterministic, Static Models 

Until very recently, the analysis of directed 
graphs, particularly in the social science con- 
text, was static and deterministic. Networks were 
not explicitly assumed to evolve over time, and 
conclusions drawn from a single network were 
deterministic, or precisely defined. The socio- 
logical version of Heider's balance theory (see 
Heider [1958]) was the prevalent paradigm. 
Leinhardt [1977] discusses the beginnings of net- 
work analysis, focusing on Heider's contribution. 
Heider's research was generalized by Cartwright 
and Harary [1956] in a paper where formal graph 
theory was introduced to social network research. 

The predictions of Cartwright and Harary's 
structural balance theory did not accord with 
reality. Davis [1967], referring to the lack of 
empirical support for the dichotomous cliquing of 
groups predicted by Cartwright and Harary's 
theorem, further elaborated on the balance para- 
digm, extending it to multiple clusters of indi- 
vidual. However, the deterministic nature of the 
theory was retained, and consequently, the model's 

fit to empirical data remained poor. What was 
needed was a model incorporating probabilistic 
assumptions on the relations among group members. 
In a series of papers, Davis, Leinhardt, and 

Holland built a stochastic component into the 
paradigm. 

Stochastic, Static Models 
The Davis -Holland - Leinhardt methodology 

involves computing conditional uniform distribu- 
tions on the space of all directed graphs. The 

most highly conditioned distribution controls for 
the dyad census, or the number of mutual, asym- 
metric, and null arcs in a digraph (see Holland 
and Leinhardt [1975]). Essentially, one computes 
the first two moments of the 16 component triad 

census, a count of the isomorphism classes of the 
(g) triads in a digraph, and compares the empiri- 
c3älly determined triad census with its expectation. 
Davis [1977] reviews this line of research, and 
Wasserman [1977a] discusses other random directed 
graph distributions. 

This approach is static in time, since it 
concentrates on only one adjacency matrix. It is, 
however, stochastic. The analysis can even be 
compared to current methodology on stochastic 
processes. Holland and Leinhardt essentially com- 
pute equilibrium distributions for digraphs, and 
assume that data on the digraph process follow 
these distributions. One outstanding question is 
whether any of these "equilibrium" distributions 
are true equilibrium distributions obtained from 
some stochastic process. Further research may 
clarify this issue. 
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Deterministic. Time - Dependent Model 
Several deterministic models for directed 

graphs have been proposed. Differential equations 
are the driving forces of such models, in which 
the effect of any change in the system can be pre- 
dicted with certainty. However, in the social 
sciences, and to a lesser extent in the natural 
sciences, changes in a system cannot be predicted 
with certainty, usually because of the unpredict- 
able nature of the objects being modelled. This 
uncertainty is best modelled through the use of 
probability distributions on random variables 
instead of the "controlling" mathematical variables 
of a system of differential equations. (A blend 
of the two approaches would be promising, but 

such model has been developed.) We prefer to 
concentrate on the more realistic set of stochas- 
tic models, and we merely refer the reader to 

Bernard and Killworth [1977] for a recent review 
of deterministic models. 

Stochastic, Time -Dependent Models 
For the remainder of this paper, we discuss 

stochastic, time -dependent models, first from the 
social sciences, and then from the natural sciences. 

The first model is the "Dynamic Model" of 
Holland and Heinhardt [1977a]. The Holland -Lein- 
hardt stochastic model is actually an encompassing 
framework for the modelling of graphs, more general 
than an explicit statement on the evolution of 
digraphs through time. The framework operates on 
the individual arcs in L, the most elementary and 
basic level of a digraph. In Wasserman [1977b], 
we develop this modelling system theoretically, 
and discuss several simple parameterizations and 
estimation of structural parameters. 

We next present three other models for social 
networks. These are a model in discrete time by 
Katz and Proctor [1959], a model based on learning 
theory of Rainio [1966], and a more recent model 
of Sdrenson and Hallinan [1976]. 

Following the social science models, we dis- 
cuss three models from the natural sciences. The 

first model that we shall discuss is for 

colation processes of the flow of fluid through a 
medium. Broadbent and Hammersley [1957] give a 
mathematical formulation of percolation theory as 
it applies to crystals and mazes. Frisch and 
Hammersley [1963] present a thorough review of the 
theory, giving definitions and listing some of the 
results available at the time and unsolved problems. 

Secondly, we shall describe a stochastic 
model for polymerization, or the evolution of 

polymers in organic chemistry. Polymers are 

"units" (or atoms) which associate into clusters 
and are also capable of disassociation. The model 

is Whittle's [1965a, 1965b], and is based on both 
the Gibbs equilibrium distribution for an ensemble 
of particles, and the deterministic kinetic equa- 

tions of thermodynamics. The blend of these two 

approaches produces a unique set of stochastic 
kinetic equations as a model for polymerization. 

Next, we discuss a model for neural networks 
of biophysics proposed by Rapoport. Rapoport's 
models of random and biased nets are not stochas- 

tic in nature; however, we include them here 
because the various types of biased nets are 
parallel to the simple stochastic models discussed 
by Wasserman [1977b]. Rapoport's notion of 



"biases" may even be considered as the theoretical 

forerunner of the structural parameters of the 

Holland -Leinhardt framework. These models are pre- 

sented in a group of papers written in the 1950's 

by Rapoport, in the Bulletin of Mathematical Bio- 

physics. Rapoport [1957] reviews the contribu- 

tions to the theory of random and biased nets, and 

Rapoport [1963] discusses the importance of nets 

to the theory of social interaction. 

Throughout this section, we let X(t) be the 

adjacency matrix representing the state of the 

digraph at time t. The binary -valued matrix X(t) 

has elements (X..(t)) where 

1, ifvv. eLattimet 
Xij(t) = i (1) 

0, otherwise. 

The time parameter, t, is assumed continuous, 
t > Throughout, we set the g diagonal terms, 
(X. (t)), to 0 for all i and t. 

We let be a single state of the continuous 
time stochastic process X(t). The procegss has a 

finite state space S of all possible 2g`g -1) 
binary -valued (gxg) matrices with zero diagonal. 
We shall let w, x, y, z, ... denote elements of 
the state space.' 

Social Science Models 
1. Holland- Leinhardt Framework 

The Holland - Leinhardt framework is merely 
two simple assumptions regarding the stochastic 
nature of the arcs X--(t). The first assumption 
is that X(t) is Markov chain. Thus by Assumption 
1, the current state of the process is all that we 
need to predict future behavior of the process. 

We make an additional assumption regarding condi- 
tional independence of the elements of X(t+h) 
given X(t) for small h, conditional choice 
independence. 

This is a critical assumption and in unique to 
this framework. It states that for very small 
intervals of time, the changes in a digraph are 
statistically independent. Consequently, the 

probability that any two arcs change simultan- 
eously is essentially zero. This assumption is 
crucial for theoretical results, since it greatly 
simplifies the mathematics. 

The infinitesimal transition rates depend on 
the entire adjacency matrix at time t, and may 
imply complex interrelations among the elements of 
x. Holland and Leinhardt [1977a, 1977b] and 
Wasserman [1977b] give examples of various functions 
specifically postulating that the infinitesimal 
transition rates of the digraph process are 
linear functions of various graph- theoretic 
quantities. 

This line of inquiry into the nature of 
social structure and evolution of social networks 
is unique because of the proposed framework for 
parameterization. By assuming that, for small 
intervals of time, the arcs of a digraph operate 
in a statistically independent manner, we are able 
to assume various functional forms for the 
infinitesimal transition rates of the process. 
Thus, a researcher may define "social structure" 
by a set of graph- theoretic quantities, and com- 
bine these in a linear fashion to form the change 
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rates of the process. This aspect of the frame- 

work is an important contribution to mathematical 
sociology, being an explicit statement on the 
evolution of a digraph as a continuous time Markov 
chain and providing a "wide open" framework for 
quantifying social structure. 

2. Other Models from Social Science 
There have been other attempts at modelling 

social networks as stochastic processes. In an 
early paper, Katz and Proctor [1959] analyze a 
sociomatrix at the level of dyads, or pairs of 
nodes in the digraph. The authors assume that 
the (g) dyads are independent observations on a 
time discrete Markov chain, and therefore test 

whether a specific data set is compatible with 
the assumptions of a Markov chain. Unfortunately, 
no explicit structural model is developed for the 
evolution of a network over time. 

Rainio [1966] develops a stochastic theory of 
social interaction. He posits a vector of prob- 

abilities, summing to unity, that regulates the 

frequency of interaction between individual i and 

the remaining (g -1) individuals in the group. 
These g vectors, one for each individual, evolve 

over time. This model is applied to a group of 

twelve girls, and the individual learning para- 
meters (a,ß) varied to provide the best fit of 
the model to the data. The model is very similar 
to the learning theory models developed by Bush 
and Mosteller [1955], and although its discrete 
time nature is a great simplification, it is an 
important contribution. 

More recently, Sirenson and Hallinan [1976] 
hypothesize that each triad, or triple of nodes, 

in a network is a continuous time Markov chain. 
However, unlike the (2g) dyads in a network, the 
(3) triads are not independent, and the assump- 
tion that the set of triads are independent ob- 
servations on a basic Markov chain is incorrect. 
Unlike the model of Sirenson and Hallinan, the 

Holland -Leinhardt framework operates at the level 

of individual choices, the most elementary and 
basic level of a network. Placing a stochastic 
mechanism on the dyads or triads and ignoring 
subgraphs of lesser order is indeed less accurate 

in describing the operational behavior of a group. 

Natural Science Models 
1. Percolation Processes 

Percolation theory seeks to describe the 
spread of a fluid throughout a medium. The random 
mechanism can either be attributed to the fluid or 
the medium: the former alternative is easily recog- 
nized as a diffusion process, while the latter is 

a percolation process. By its nature, percolation 
theory is more deterministic than diffusion theory, 

being subject to more restrictive assumptions, and 

certainly less widely known. The examples of per- 

colation processes are many, ranging from fractures 

of crystals, and water absorption in a porous solid, 

to spread of blight in an orchard. Percolation 
theory stands apart from general epidemics (see 

Bartholomew [1973], Chapter 9 and 10) in that the 
medium under consideration is constrained by a 
particular geographic structure. 



Percolation theory considers the following 
problem: 

Let C be a connected graph with a countable 
set of nodes {X01_0 and arcs joining X 
to X. Each arc Lij is blocked, so that no fluid 

may traverse it, with probability 1 -pii, and 

unblocked, with probability N. We tfien supply 

fluid to a random set of arcs, and study the flow 
of fluid through the system. This is the'simplest 
case in percolation theory. More complicated 
situations are given in Frisch and Hammers ley 
[1963]. 

As one can see, percolation theory might be 
quite important to the study of diffusion of 
innovations through a social network. Unfortunate- 
ly, because of the complicated mathematics, it is 
virtually inaccessible to social scientists, and 
very rarely referenced. 

2. Polymerization Processes 
We shall now consider Whittle's model for 

polymerization. The polymerization process has a 
state space of all symmetric graphs whose adjacency 
matrices can be permuted to block diagonal form, a 
space much smaller than S. An example of polymer- 
ization will be illustrated. 

Suppose at time t, we have a group of size g 
that is composed of k < g distinct clusters of 
nodes or cliques or polymers, such that no arcs 

exist between cliques, and within each clique, all 
arcs are present. Thus, each clique is strongly 
connected, and the adjacency matrix for the digraph 
can be permuted to a matrix with blocks of ones 
along the diagonal, one block per clique, and 
zeros elsewhere. Figure 2 depicts a situation with 
9 nodes and 3 clusters. 

When two -polymers come together, all arcs 
between the two come into existence, so that the 
new clique is also strongly connected. When a 
polymer disassociates into two new polymers, all 
arcs between the two smaller polymers disappear. 
Thus we always have a symmetric digraph with block - 
diagonal- permutable adjacency matrix. Note that 
the second assumption of the Holland -Leinhardt 
framework does not apply to Whittle's polymeriza- 
tion process, since, in general, a large number of 
arcs change simultaneously whenever polymers 
associate or disassociate. 

Recently, in sociology, there has been renewed 
interest in clique formation. One of the proposed 
models for cliques in social networks (Breiger, 
Boorman, and Arabie [1975] and White, Boorman, and 
Breiger [1976]), the blockmodel, is not stochastic. 
Merging Whittle's stochastic model of group struc- 
ture with the blockmodel proposed by White, et al, 
would be a substantial contribution to the analysis 
of social Networks. There are other, simpler 
stochastic models for group changes. Morgan [1976] 
gives a review of these models, in addition to 
extending Whittle's results by proving the poly- 
merization model to be reversible. 
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Figure 2: Polymerization Digraph and 

Permuted Adjacency Matrix. 

3. Random and Biased Nets 
Next, we discuss Rapoport's models for random 

and biased nets. Rapoport defines a random net as 
a binary directed graph with each node assigned a 
fixed outdegree a. This "fixed choice" adjacency 
matrix is only random in the conditional sense 
that every node in the group is equally likely to 
receive one of the a arcs of node i. The adjacency 
matrix is conditioned to have a fixed vector of out - 
degrees (a,a,...,a)'. 

Rapoport assumes a single adjacency matrix, 
with some fixed outdegree, and examines a tracing, 
of the network. A tracing is merely a path through 
the het, beginning at an arbitrary number of nodes. 
We then record these nodes as the initial set and 
all new nodes that are chosen by the initial set 
are termed first remove,. This tracing is continued, 
all the while recording the fraction of the popula- 
tion present in the initial set, first remove, 
second remove, etc.. By examining these fractions, 
Rapoport estimates a by a, the apparent choice or 
axone density. This choice density was found to 
deviate from a empirically. 

In an attempt to explain this deviation, 
Rapoport defines certain biases, operating in nets, 
that could cause the discrepancy. These biases 
include'distance bias, symmetry bias, and transi- 
tivity biases. Distance bias decreases the chance 
that two individuals far apart from one another in 
the constructed "social space" will interact. 
Symmetry bias increases the chance of a choice j9i, 
if the choice i4j is present, and as defined, is 
identical to the and terms in the mutuality 



model of Wasserman [1977b]. Transitivity biases 
have a similar interpretation as T0, Ti, and T2 in 

the model presented in Holland and Leinhardt 
[1977a]. 

Unfortunately, Rapoport is able to do little 

with these biases mathematically, except to 

estimate gross statistical features of the graph. 
There is a strong relation between Rapoport's 
work and the models of mutuality, popularity, and 
expansiveness discussed in Wasserman [1977b] 
utilizing the modelling framework. A further study 
of his relation would be useful. 

Concluding Remarks 
We have discussed several models for graphs 

and compared the stochastic, time- dependent models 
to the new modelling framework proposed by Holland 
and Leinhardt [1977a]. Directions for future 
research are indicated throughout this paper, 

specific ideas concerning how existing models could 
be accurately represented by this new framework. 
This research should prove both promising and 
exciting, with additional insight into the evolu- 
tion of social networks over time as an added 
benefit. 
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